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U. of Colorado has Identified Mechanism-Induced Microdynamic
Instabilities in a Prototype Deployable Telescope Metering Truss

e Testing hasidentified “ micro-lurching” which isa dimensional change
directly related to friction-induced hysteresiswithin thejoints,

e A micro-lurch isamicrodynamic INSTABILITY: it occursONLY
above a certain energy threshold correlated with the hyster esis-collapse
loads within thejoints.

* |t currently appears probablethat a micro-lurch can be minimized
through proper mechanism design, and the next-generation deployable
telescope test articleis expected to be stableto < .5mm.
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Simplified Load-Transfer Model lllustrates Suspected Relationship
Between Friction-Induced Hysteresis and Micro-Lurching

Linear Response Below Stick-Slip Threshold
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Load-Cycle Tests of Precision Revolute Joints

PREVIOUSTESTS:

» L ow-load-cycle magnitude response (< 22 N) characterized asLINEAR
with no measurable hysteresis.

» High-load-cycle magnitude response (> 222 N) characterized as
HYSTERETIC with about 1% to 2% loss.

GOALSOF PRESENT TESTS:

* To quantify the hysteretic response of the precision revolutejoints
under quasi-static load cycling, and to characterize variationsin the
hyster etic response due to:

— load-cycle magnitude
— manufacturing tolerances
— variationsin two critical design parameters
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Present Test Setup and Data Reduction Procedures
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Precision Revolute Joint Test Specimens
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Name | No. tested | Pin fit*| Bearing preload

C-0 1 N/A N/A

C-a 1 a N/A

C-b 1 b N/A
J-a-05 1 a 22-44 N (5-10 Iby)
J-b-05 1 b 22-44 N (5-10 Iby)
J-a-10 1 a 44-66 N (10-15 Iby)
J-b-10 5 b 44-66 N (10-15 Iby)
J-a-20 1 a 89-111 N (20-25 Iby)
J-b-20 1 b 89-111 N (20-25 |by)

*Differ ence between pin and hole diameter s:

“a’ pressfit 0.069 - 0.089 mm (0.0027 - 0.0035 in)
“b” pressfit 0.043 - 0.064 mm (0.0017 - 0.0025 in)
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Test Setup

Compliant
linkage

specimen

Test
specimen

Test specimen and displacement
L oad frame with test specimen Instrumentation

GREAT CARE TAKEN TO MINIMIZE:

* I nstrumentation noise, hysteresis, and nonlinearities
» Off-axisloading of specimen
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Data Filtering Algorithms Reduced High-Frequency Noise in

Displacement Measurements by an Order of Magnitude
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» Data spikesremoved

» High-frequency noise
filtered

* Threeload cycles averaged

» Resolution: O(25 nm)

10



NGST TEcHNOLOGY CHALLENGE REVIEW
Langley Research Center

Test Results
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Micro-Slippage in the Press-Fit Pin:
Results From the Calibration Specimens
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o Solid aluminum rod (specimen C-0) exhibits no significant hysteretic
energy loss.

* Both C-aand C-b exhibit no significant energy loss at |load-cycle
magnitudes below 100 N (22 Ib;).

e Both C-b (low-press-fit pin) exhibits approximately 60% to 70% greater
energy lossthan C-a (high-press-fit pin) at load-cycle magnitudes above
100 N (22 1by).
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Bias Error and Random Error in Data
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Biaserror in energy-loss calculations using Typical random variability in normalized
raw and reduced data from C-b. (i.e., percent) energy-loss calculations
* Energy-losscalculations are dlightly » Energy-losscalculations normalized by
negative at low-load-cycle magnitudes. total elastic strain energy
« Biasing might bedueto dight temporal < 1(s) random variability estimated from
shift of load or displacement data six tests at each load-cycle magnitude
 Numerous sourcesinvestigated, but no e« Small variability at high-load-cycle
explanation found magnitudes, larger variability at low
magnitudes

M. S. Lake 78/97 13



NGST TEcHNOLOGY CHALLENGE REVIEW
Langley Research Center

Micro-Slippage in the Bearings:
Results from the Revolute Joint Specimens
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» Jointsexhibit two to threetimes greater energy lossthan calibration
specimens with no bearings (C-a and C-b)

o Jointswith high-pressfit pins (J-a-05 and J-a-20) exhibit less ener gy
loss than joints with low-pressfit pins (J-b-05 and J-b-20)

» Jointswith high-preload bearings (J-a-20 and J-b-20) exhibit less ener gy
loss than joints with low-preload bearings (J-a-05 and J-b-05)
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Variations in Response Due to Manufacturing Tolerances
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* Five, nominally identical, specimens (J-b-10) exhibited significant
variation in response

» Bearing manufacturer’s specification includes 50% uncertainty in
bearing preload (44-66 N) under ideal installation conditions

* Machining specification on press-fit-pin includes 50% uncertainty in
interferencefit (diameter-differencerange = 43-64 nm)

» Hysteretic energy loss decreases monotonically with load-cycle
magnitude and effectively vanishes below 50 N of load-cycle magnitude.
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Summary of Test Results and Implications

« Significant variability in response was seen due to manufacturing tolerances.

— NONLINEAR MICRODYNAMIC RESPONSE ISINHERENTLY
PROBABILISTIC.

« Approximately the same amount of micro-slippage-induced energy lossis
exhibited by the angular-contact bearing and the press-fit pin.

— ALL INTERFACES ARE IMPORTANT (EVEN “STATIC” ONEYS)!

» A weak correlation was seen between preload and the magnitude of hysteretic
loss, however preload did not eliminate hysteresis

— PRELOADING OF MECHANICAL INTERFACESMIGHT HAVE LITTLE
EFFECT ON POST-DEPLOYMENT DIMENSIONAL STABILITY

* Thepresent dataindicatethat theresponse of thejoint iISEFFECTIVELY elastic
for load-cycle magnitudes below approximately 50 N (11 1by).

— ALTHOUGH NONLINEAR MICRODY NAMIC RESPONSE IS
INHERENTLY PROBABILISTIC, IT SHOULD BE INSIGNIFICANT
BELOW A CERTAIN STRAIN-ENERGY THRESHOLD.
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Development of a Deployable Primary Mirror for a
Space-Based Lidar Telescope

or
“A Funny Thing Happened When We Tried to Define the

Passive Dimensional Stability Limits of Mechanically
Deployed Telescope Structures”
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Space-Based Lidar Instrument Types, Science Goals,
and Optical Requirements

Instrument Type Science Goal Optical Requirement
Elastic Backscatter Clouds and Aerosols ~1-51 (visble)
Differential Absorbtion (DIAL) Chemestry ~1-51 (visbletonear UV)
Non-Coherent Doppler Shift Winds ~1-51 (visble)

Coherent Doppler Shift Winds ~1 /20 (visible)

 Most of thelidar science instruments employ “light-bucket” quality
telescopes whose optical figure requirements are substantially less strict
than imaging instruments.

o Current test experience with high-precision deployment mechanisms
indicatesthat it might be possibleto PASSIVELY maintain the
necessary optical alignment of a deployable (incoherent) lidar telescope
mirror (i.e., ~.5mm microdynamic stability)
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“Low-Risk” Deployable Telescope Concept for NMP Lidar Mission
(EO-3 Mission Opportunity)

* Fixed .9-m (state-of-the-practice)
primary and fixed secondary.

e Six independently deployable 5x Deployed Aperture Telescope Concept
.6-m primary segments (advanced
technology) with independent thin-
membrane sun shroud segments.

« “Simple” 1-dof reflector deploy-
ment kinematics.

» Factor of four increasein primary
reflector area through deployment
(deployed area equivalent to 1.8-m
aperture).

(Sun shade cut away for clarity)

« CLEAROPTICAL PATH IN
STOWED CONFIGURATION.
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Deployed Aperture Telescope Concept

Panel decenter: 0.75m

System Parameters

Aperture: 2.1 m, 1/5.15

Pnmary: HD =-2543.889 mm, K =-1.0037

Secondary: RD =-333.04 mm, K = -1.65046
ary diameter: 250 mm
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Deployed Aperture Telescope Concept

Thin membrane sun shade

Spacecraft bus

Deployment mechanism/truss
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Summary of Deployable Lidar Telescope Feasibility

* The optical telescope assembly concept is“ sporty” by most standards
(i.e., light-weight and fast!)

* A 2-m-class deployable telescope istechnically feasible by the year 2000.
* Instrument masswould be ~50 kg and would package in a Pegasus.

* Instrument could probably use current composite mirror technology
which gives < 1 mm surface figure with near-zero CTE and an areal
density of ~7 kg/m2,

* A 2-m-class deployable telescope primary mirror isplanned to be built
in 1998 for ground microdynamic testing.

o Currently, it isfelt that such an instrument could be built to achieve the
necessary dimensional stability requirements passively. THIS
DEMONSTRATION ESSENTIALLY ESTABLISHESTHE
THRESHOLD BELOW WHICH ACTIVE ALIGNMENT CONTROL
|SNECESSARY.
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